Moryak.biz - Морской образовательный портал    Главная
Начальная
страница
 Фотоальбом
Ваши
фото
 Образование
Наши
разделы
 Крюинги
Каталог
крюингов
 Файлы
Программы
книги
 Каталог судов
Социальная
сеть
 Форум
Наш
форум

 Морской портал - программы, книги, форум для моряков

 Главное меню
· Главная

Образование
· Навигация
· Управление и маневрирование судном
· ГМССБ
· МППСС
· Мореходная астрономия
· Теория устройства судна
· Морские узлы
· Технические средства судовождения
· Технология морских перевозок
· Навигационная метеорология
· Морской терминологический справочник (рус.-англ.)
· Неотложная помощь в море

Файлы
· Книги
· Программы
· Видео

· Каталог крюинговых компаний
· Ссылки

· Форум
· Каталог судов 
· Фотоальбом
· Контакты

 Поиск по сайту



 Реклама



 Наши друзья


Оптическая атмосферная рефракция



Оптическая атмосферная рефракция
Опыт показывает, что траектории оптических лучей, проходящих через атмосферу, не являются прямыми линиями; они искривляются более или менее плавно. Такое искривление траектории луча свидетельствует о том, что скорость распространения света в атмосфере отклоняется от таковой в вакууме и, кроме того, изменяется на пути луча. С увеличением показателя преломления скорость света уменьшается. Показатель преломления света в атмосфере мало отличается от единицы (значения в вакууме), однако, учитывая большую длину траектории луча, этого отклонения достаточно для того чтобы получить существенное отличие траектории луча от прямой линии. Показатель преломления света (n) изменяется с изменением плотности атмосферы; аналитически это выражается следующей формулой:
где р—давление воздуха в мб; Т—температура по абсолютной шкале.
Расчеты показывают, что, когда солнечный свет распространяется по направлению к Земле, лучи, как правило, проходят в среде с все увеличивающимся значением показателя преломления, т. е. оптическая плотность среды увеличивается, а следовательно, скорость света уменьшается.
В результате с приближением к поверхности Земли луч все больше и больше приближается к направлению отвеса, а это значит, что траектория луча будет искривлена так, что вогнутость ее будет обращена к земной поверхности. Вид этой траектории будет аналогичен траектории частички газа или жидкости, которая движется от слоя к слою с все увеличивающимся трением из-за увеличения плотности среды.
Искривление (преломление или рефракция) луча отмечается только в том случае, когда он падает на слои разной оптической плотности под углом, отличным от 90°.
Явление рефракции световых лучей объясняется тем, что электромагнитные волны, распространяясь в среде, поляризуют молекулы последней. В результате этого в среде образуется собственное электромагнитное поле, направленное противоположно внешнему полю. Взаимодействие этих полей и обусловливает уменьшение скорости света и искривление траекторий лучей. Рефракция луча тем больше, чем больше угол падения.
Вследствие искривления лучей в атмосфере удаленные предметы м наблюдаем в направлениях, отличных от истинных, поскольку мы проектируем предмет в направлении касательной к траектории луча в точке наблюдения. Угол между направлением на действительное и видимое положение предмета называется рефракцией (или углом рефракции, а угол между касательными в начальной и конечной точках пути светового луча — углом полной рефракции.
 
Рефракция в атмосфере
 
Рефракция в атмосфере
Рис. 1.5.1. Рефракция в атмосфере.
 
В случае, если объект наблюдения находится за пределами атмосферы (рис. 19 а), рефракция называется астрономической (ρ), если в пределах атмосферы (рис. 196) —земной (r). Астрономическая рефракция может быть вычислена по приближенной формуле:
ρ = 57” tg z´ (для z´ <= 80°), где z´видимое зенитное расстояние, которое всегда меньше действительного.
Наличие астрономической рефракции приводит к тому, что измеряемые зенитные расстояния светил оказываются меньше истинных, особенно в случаях, когда светила расположены у горизонта. По этой причине мы видим Солнце некоторое время и после того, как оно опустилось за горизонт, что приводит к увеличению продолжительности дня в умеренных широтах на 8—12 мин.
Явление рефракции обусловливает изменение формы видимого диска Солнца и Луны при нахождении их вблизи горизонта, так как разная величина угла рефракции для верхнего и нижнего краев светил приводит к различной величине приподнятости их, поэтому светила кажутся сплюснутыми.
Вследствие рефракции света наблюдается явление дрожания удаленных предметов и мерцания звезд. Из-за турбулентности атмосферы в последней имеется множество неоднородностей показателя преломления, которые действуют подобно непрерывно перемещающимся линзам, расположенным на пути луча.
В определенных условиях (при аномальном распределении плотности воздуха), связанных с резкими изменениями температуры по высоте и по горизонтали, лучи света в отдельных слоях воздуха могут претерпевать полное внутреннее отражение. Тогда, кроме самого объекта, можно наблюдать и его отраженное изображение (прямое или обратное). Это явление получило название миража. Миражи бывают верхние, нижние и редко боковые.
Верхние миражи обусловлены резким уменьшением плотности воздуха с высотой (при сильных инверсиях), нижние — при больших вертикальных градиентах температуры и неустойчивой стратификации, боковые — при неравномерном распределении плотности на уровне наблюдателя. Верхние и боковые миражи чаще всего наблюдаются в прибрежных водах полярных районов, нижние — в южных пустынных районах.
Верхние и боковые миражи чаще наблюдаются в высоких широтах, где нередки случаи резкого падения плотности с высотой (особенно при температурных инверсиях). Верхние миражи, напротив, возможны при незначительном падении плотности с высотой, особенно при резко неустойчивой стратификации атмосферы.
При верхнем мираже световые лучи, направленные от предмета вверх, отклоняются от прямолинейного направления и, искривляясь, достигают глаза наблюдателя таким образом, что предметы кажутся отраженными вверх в перевернутом виде.
При нижнем мираже лучи отклоняются так, что предмет кажется отраженным вниз и более обычного приподнят над горизонтом.
При боковом мираже мнимые изображения появляются справа или слева от истинного положения предмета.
Иногда очевидцы описывают явление сложного миража, когда очертания предметов сильно искажены. Это явление носит название фата-морганы.
При прохождении световых лучей через облака и осадки они испытывают преломление, отражение и дифракцию в каплях и кристаллах. В результате этого воздействия мы наблюдаем характерные оптические явления — радуги, гало, венцы и др.
Радуга — световая (радужная) дуга (дуги) радиусом 42°, 52°, окрашенная в спектральные цвета (по внешнему краю в красный, по внутреннему в фиолетовый), наблюдаемая на фоне неба и облаков в противоположной от Солнца или Луны стороне с центром в антисолярной точке (точке линии, соединяющей центр солнечного или лунного диска с глазом наблюдателя). Радуга объясняется преломлением солнечных лучей при входе и выходе из капель и полным внутренним их отражением внутри капель. Яркость и интенсивность радуги зависят от преобладающего диаметра дождевых капель. Крупнопанельный дождь образует четкую и яркую радугу с ясным разделением цветов. Радуга на фоне тумана или облаков с мелкими каплями широкая, блеклая или вовсе белая, размытая. Лунная радуга всегда белая, что объясняется свойствами человеческого глаза. Нередко наблюдается более слабая дополнительная дуга (дуги) радуги с обратным расположением цветов. При высоте Солнца 42° и более радуга не наблюдается вовсе. Чем ниже высота Солнца, тем выше и длиннее дуга радуги. Наблюдать радугу можно и в брызгах морских волн.
Гало — могут возникать, как многообразные оптические явления, в ледяных облаках верхнего яруса, особенно в перисто-слоистых. Наиболее повторяющиеся их формы можно разделить на две группы. Слегка окрашенные в различные цвета (красный цвет располагается со стороны Солнца или Луны) — круги радиусом 22° и 46°, касательные дуги к ним, ложные солнца и гало; не имеющие окраски — горизонтальный круг, вертикальные столбы, проходящие через солнечный диск, кресты и др. Окрашенные гало объясняются преломлением света в шестигранных призматических кристаллах ледяных облаков, а неокрашенные (бесцветные) — отражением света от граней кристаллов. Разнообразие форм гало зависит главным образом от типов кристаллов, суммарного движения и пространственной ориентацией их осей (граней), а также от высоты Солнца;
Венцы. В тонких капельножидких облаках, сквозь которые просвечивают Солнце или Луна, могут возникать радужные кольца — венцы. Венцы могут наблюдаться также в тумане вокруг искусственных источников света. Первый световой круг венца (ореол) непосредственно примыкает к свету, далее он сменяется концентрическими менее яркими цветными кольцами — венцами второго, третьего порядков. Размеры венцов колеблются от 1 до 10 °. Венцы образуются за счет дифракции света при прохождении через мельчайшие капли и кристаллы облаков и туманов световых лучей;
Глории — подобны венцам, но наблюдаются они в противоположной от Солнца или Луны стороне с центром в антисолярной точке. Это явление объясняется также дифракцией света, уже отраженного в капельках облаков так, что он возвращается от облака в том же направлении, по которому падал.






 Реклама

загрузка...


 Баннер

Электронные сигареты






загрузка...

Rambler's Top100


PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.
The Russian localization - project Rus-PhpNuke.com
Открытие страницы: 0.05 секунды
The Russian localization - project Rus-PhpNuke.com